新闻中心

Mapping species range shifts under recent climatic changes

作者:Hokkaido University

时间 :2018/7/12 0:00:00

The inclusion of taxon-specific sensitivity to a shifting climate helps us understand species distributional responses to changes in climate.

Marine species in the eastern Bering Sea are not shifting their distribution ranges fast enough to keep track of current changes in climate, according to a study led by researchers at Hokkaido University.

As global climate change alters sea temperatures and environmental conditions, marine species need to track these signals at a sufficient pace to remain within their climatic habitat. However, lags in distributional responses to temperature shifts have been documented in terrestrial and aquatic taxa, as species range dynamics are also influenced by factors other than climate.

Irene Alabia, a fisheries oceanographer at Hokkaido University's Arctic Research Center, led a study to evaluate multi-taxa responses to contrasting climatic regimes in the eastern Bering Sea, defined by persistent stanzas of regional warming and cooling. She worked with colleagues at Hokkaido University and the University of Alaska Fairbanks to examine potential distributions of 21 fish and invertebrate species in the eastern Bering Sea between 1993 and 2016. These were generated from multi-ensemble habitat models correlating taxon-specific occurrences to suite of climatic (winter sea surface temperature) and environmental factors (winter sea ice cover and depth).

Using satellite-derived environmental data and species data from bottom trawl surveys, the team compared rates of local climatic change (climatic velocity) to both observed (data-driven) and expected (model-driven) species distributional responses. They found that the climatic velocities were poorly correlated with observed and expected distributional responses, underpinning the importance of incorporating species-specific sensitivity to climate variation when predicting rates of range shifts in response to climatic changes. Further, most of the species examined were trailing behind climate change, potentially increasing their vulnerability to future climate fluctuations.

"Our results can be useful for reinforcing current conservation and management efforts, and help develop adaptive management strategies to deal with varying impacts of climate changes to marine resources in the region," says Irene Alabia of Hokkaido University. The study was published in the journal Diversity and Distributions.

###

<< 上一篇:Parental chromosomes kept apart during embryo's first division 下一篇:Controlling the manufacture of stable aerogels>>
技术支持:北京华宇星航国际教育科技有限公司 豫ICP备17016808号

人工智能在线咨询

智能在线咨询 X

关于我们

该服务平台支持关键词检索、文献题名检索(准确题名)、文献DOI号检索、作者检索。当查询题名返回的结果无法下载全文数据或查询不到时,请找到所查文献DOI号后再次查询。查询结果会在10秒内返回, 24小时不间断的提供文献查询服务。

微信端

人工智能在线咨询